CBCS SCHEME

USN												15CS34
-----	--	--	--	--	--	--	--	--	--	--	--	--------

Third Semester B.E. Degree Examination, Aug./Sept. 2020 Computer Organization

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

1100	700	-		-
8	VI o		 •	- 1
90.	4 B B			
800 mm		-		_

- 1 a. How to measure the performance of a computer? Explain. (05 Marks)
 - b. What are the four types operations required by the instruction to be performed by the computer? Explain the basic instruction types with an example. (06 Marks)
 - c. Explain the concept of stack frames when subroutines are nested.

(05 Marks)

OF

- 2 a. What is performance measurement? Explain the SPEC rating for the computer in a program.
 - b. Explain with examples, any three generic addressing modes with assembler syntax.

(09 Marks)

Module-2

- a. Discuss the interrupt priority with daisy chain and in the priority groups. (05 Marks)
 - b. With the typical block diagram of a DMA controller and explain how it is used of direct data transfer between memory and peripherals. (06 Marks)
 - c. With a neat figure, explain a general 8 bit parallel interface circuit. (05 Marks)

OR

- 4 a. Explain neatly the bus arbitration methods. (05 Marks)
 - b. Show how DMA transfer is accomplished with a neat sketch. (06 Marks)
 - c. Explain SCSI bus data transfer in a computer system. (05 Marks)

Module-3

- 5 a. Explain the organization of 1K × 1 memory chip.
 b. Illustrate cache memory mapping functions.
 (05 Marks)
 (06 Marks)
 - c. Explain Virtual memory address translations. (05 Marks)

OR

- 6 a. Explain the direct mapped cache in mapping functions with a neat diagram. (08 Marks)
 - b. What is memory interleaving? Explain with a suitable example.

(08 Marks)

(04 Marks)

Module-4

- 7 a. Explain 4-bit carry-look ahead adder with a neat diagram. (06 Marks)
 - b. Perform the addition and subtraction of following signed number (Any two)
 - i) +2 and +3 (Addition)
 - ii) -7 and -5 (Subtraction)
 - iii) +4 and -6 (Addition)
 - iv) +7 and -3 (Addition)
 - c. Perform bit pair recoding for -11 and +27 [(-11) multiplicand and (+27) multiplier].

 (06 Marks)

OR Perform Booth's algorithm for (+15) and (-6) [(+15) Multiplicand (-6) Multiplier] (08 Marks) (08 Marks) b. Perform 1100 ÷ 11 using non restoring algorithm. (08 Marks) Explain the Three bus organization of processor. Show with a block diagram an embedded processor and briefly explain. (08 Marks) OR Compare and contrast the following: (08 Marks) b. Explain the sequence of steps required to execute the following instruction ADD (R3), R₁. (08 Marks)